Kurzmitteilung/Short Communication

Einkernige Nickel-Thiolato-Komplexe mit Nickel-Zentren in unterschiedlichen Oxidationszuständen: Molekularer Aufbau von $[Ni(SC_6H_4O)_2]^{2-}$ und $[Ni(SC_6H_4O)_2]^{-*}$

Martin Köckerling und Gerald Henkel*

Fachgebiet Anorganische Chemie/Festkörperchemie der Universität Duisburg, Lotharstraße 1, W-4100 Duisburg 1

Eingegangen am 1. Dezember 1992

Key Words: Thiolato ligands / Nickel complexes / Hydrogenase models / Bioinorganic chemistry

Mononuclear Nickel Thiolate Complexes Containing Nickel Sites in Different Oxidation States: Molecular Definition of $[Ni(SC_6H_4O)_2]^{2-}$ and $[Ni(SC_6H_4O)_2]^{-+}$

A solution of NiCl₂ \cdot 6 H₂O in EtOH/H₂O reacts with *n*Bu₃N and o-mercaptophenol to form $[nBu_3NH]_2[Ni(SC_6H_4O)_2] \cdot$ EtOH (2) containing the nickel(II) complex $[Ni(SC_6H_4O)_2]^{2-1}$ (1). The molecular structures of 1 and its oxidation product, $[Ni(SC_6H_4O)_2]^{-1}$ (3), have been determined by X-ray diffraction. With respect to the chemical as well as electrochemical properties of the nickel sites of various hydrogenases, **3** is the first relevant model complex of coordination number four whose structural properties have been determined in different oxidation states.

Die Nickel-Zentren verschiedener Hydrogenasen sind bisher noch nicht eindeutig charakterisiert worden^[1-3]. Bemerkenswert ist, daß diese Enzyme das Nickel-Ion mit Hilfe von Schwefel-Liganden in der Oxidationsstufe III stabilisieren können. An der Bindung des Nickel-Ions sind vermutlich auch Sauerstoff- und/oder Stickstoff-Atome beteiligt^[4]. Die Potentiale für die NiIII/NiII-Redox-Systeme liegen dabei zwischen – 390 und – 600 mV (gegen SCE)^[1].

Im Zuge unserer Arbeiten zur Modellierung biologisch wichtiger Metall – Schwefel-Zentren^[5] haben wir bereits über gemischtvalente mehrkernige Verbindungen berichtet^[6,7]. Während sich das neuartige Cluster-Anion [Ni₈S(SC₄H₉)₉]⁻ dabei durch die niedrige mittlere Oxidationsstufe von +1.25 und durch eine ungewöhnliche trigonal-planare Metall-Koordination auszeichnet^[6], handelt es sich bei [Ni₄(SC₃H₇)₈I] und [Ni₄(SC₃H₇)₈Br] dagegen um Oxidationsprodukte konventioneller vierkerniger Nickel(II)-Komplexe^[7]. Einkernige Nickel(II)-Komplexe mit Alkanthiolato-Liganden können ebenfalls oxidiert werden, jedoch sind die Strukturen der oxidierten Spezies noch unbekannt^[8]. In dieser Arbeit berichten wir nun über den molekularen Aufbau der einkernigen 2-Mercaptophenolato-Komplex-Ionen 1 und 3, die sich in den Oxidationszuständen von Nickel (II bzw. III) unterscheiden und die in Form der Komplex-Salze 2 und 4 isoliert werden konnten.

$$[Ni(SC_{6}H_{4}O)_{2}]^{2-} [nBu_{3}NH]_{2}[Ni(SC_{6}H_{4}O)_{2}] \cdot EtOH$$

$$1 \qquad 2$$

$$[Ni(SC_{6}H_{4}O)_{2}]^{-} [nBu_{4}N][Ni(SC_{6}H_{4}O)_{2}]$$

$$3 \qquad 4$$

Die Komplex-Anionen 1 und 3 wurden bereits von Balch spektroskopisch und elektrochemisch charakterisiert^[9].

Nach den Ergebnissen der Röntgenstrukturanalyse liegen in Kristallen von 2 einkernige verzerrt quadratisch-planare Komplex-Anionen 1 vor (Abb. 1). Sie sind über $O-H\cdots O$ - bzw. $N-H\cdots O$ -

Wasserstoff-Brücken mit je einem Ethanol-Molekül und einem der beiden $[nBu_3NH]^+$ -Ionen verknüpft. Eine weitere N-H…O-Wasserstoff-Brücke wird zwischen dem zweiten Kation und dem Ethanol-Molekül beobachtet. Die beiden *o*-Mercaptophenolato-Liganden ordnen sich so um das Nickel-Atom, daß einem Schwefel-Atom immer ein Sauerstoff-Atom des anderen Liganden gegenübersteht. Durch die unterschiedlich langen Ni-S- (Mittelwert 2.153 Å) und Ni-O-Bindungen (Mittelwert 1.875 Å) liegt eine trapezartige Anordnung der Ligand-Atome mit einer kurzen [O(1)…O(2) 2.555 Å] und einer langen Kante [S(1)…S(2) 3.136 Å] vor.

1 läßt sich elektrochemisch zum Mono-Anion oxidieren. Nach polarographischen Messungen liegen die entsprechenden Redox-

Abb. 1. Struktur der Komponenten von 2 im Kristall mit Wasserstoff-Brücken (gestrichelt); ausgewählte Abstände [Å] und Winkel [°]: Ni-S(1) 2.153(2), Ni-S(2) 2.153(2), Ni-O(1) 1.885(4), Ni-O(2) 1.865(3), S(1)-C(1) 1.743(6), S(2)-C(7) 1.723(7), O(1)-C(2) 1.323(9), O(2)-C(8) 1.344(8); S(1)-Ni-S(2) 93.5(1), S(1)-Ni-O(1) 90.4(1), S(2)-Ni-O(2) 90.4(1), O(1)-Ni-O(2) 85.9(2)

Chem. Ber. 1993, 126, 951-953 (C) VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1993 0009-2940/93/0404-0951 \$ 10.00+.25/0

wellen bei $E_{1/2} = -430 \text{ mV}$ (DMSO vs. SCE) bzw. $E_{1/2} = -320 \text{ mV}$ (CH₂Cl₂ vs. SCE)^[9]. Im Cyclovoltammogramm einer Lösung von 2 in Acetonitril findet man ein Halbwellenpotential bei $E_{1/2} = -370 \text{ mV}$ (vs. SCE; Leitsalz: 0.1 M LiClO₄). Durch Oxidation einer Lösung von 2 mit Luftsauerstoff entsteht das Komplex-Anion 3, das als Tetra-*n*-butylammonium-Salz 4 in Form dunkelgrüner Kristalle isoliert werden kann^[9]. 4 bleibt auch in Lösung bei weiterem Luftzutritt unverändert stabil.

Kristalle von 4 enthalten neben verzerrt quadratisch-planaren Komplex-Anionen von "dreiwertigem" Nickel isolierte Tetra-*n*-butylammonium-Ionen. Die beiden *o*-Mercaptophenolato-Liganden sind wie in 1 in *cis*-Anordnung an das Nickel-Atom gebunden (Abb. 2). Eine *trans*-Anordnung gemischter bifunktioneller Chelatliganden liegt in den Verbindungen [Pt(*o*-SC₆H₄NH)₂]^[10], [Ni-{SCH₂CH(NH₂)COO}₂]^{2-[11]} und [Ni{SCH₂CH₂N(CH₃)₂]^[12] vor, während *cis*-koordinierte Liganden in [Ni{SC(CH₃)₂CH(NH₂)-COO}₂]^{2-[13]} und [Ni(SC₃H₄NO)₂]^[14] gefunden werden. Die hier beobachtete *cis*-Konformation besitzt im Vergleich zur Anordnung mit *trans*-ständigen Liganden einen zusätzlichen strukturellen Freiheitsgrad. So ist der Winkel S(1) – Ni – S(2) in 1 mit 93.5° signifikant gegenüber dem Winkel O(1) – Ni – O(2) (85.9°) aufgeweitet. Bei der Oxidation gleichen sich diese Winkel einander an und erreichen Werte von 90.6° (S – Ni – S) bzw. 89.1° (O – Ni – O).

Abb. 2. Das Komplexanion 3 im Kristall von 4; ausgewählte Abstände [Å] und Winkel [°]: Ni-S(1) 2.117(2), Ni-S(2) 2.119(2), Ni-O(1) 1.849(4), Ni-O(2) 1.851(4), S(1)-C(1) 1.735(7), S(2)-C(7) 1.742(7), O(1)-C(2) 1.324(9), O(2)-C(8) 1.327(8); S(1)-Ni-S(2) 90.6(1), S(1)-Ni-O(1) 90.2(1), S(2)-Ni-O(2) 90.1(2), O(1)-Ni-O(2) 89.1(2)

Aus den Strukturen von 1 und 3 geht der Einfluß der Oxidationsstufe auf die Abstände und Winkel der NiS₂O₂-Einheit klar hervor. Bei der Oxidation von 1 verkürzen sich die Ni–S-Abstände im Mittel um 0.035 Å und die Ni–O-Abstände im Mittel um 0.025 Å, während die S–C-, O–C- und C–C-Abstände der Komplex-Anionen nur geringfügige Änderungen erfahren. Dieses Verhalten zeigt, daß die Oxidation im Gegensatz zu früheren Annahmen^[9,15] nicht unter Bildung von Radikal-Anionen verläuft, wie es bei Dithiolen-Verbindungen des Typs [Ni(S₂C₂R₂)₂]^{n–} (n =1, 2; R = Ph, CF₃, CN)^[15] häufig der Fall ist, sondern am Nickel-Ion ansetzt. Ganz ähnlich verhält sich der vergleichbare Benzol-1,2-dithiolato-Komplex, bei dem die mittlere Verkürzung des Ni–S-Abstandes mit 0.015 Å bei der Oxidation jedoch deutlich geringer ausfällt^[16].

Mit dieser Untersuchung ist es erstmals gelungen, ein chemisch (O/S-Donorsatz) und elektrochemisch (Redoxpotential) gleichermaßen relevantes Modellsystem für die aktiven Zentren der [FeNiS]-Hydrogenasen in zwei Oxidationszuständen strukturell zu charakterisieren.

Wir danken der Deutschen Forschungsgemeinschaft, dem Bundesminister für Forschung und Technologie und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit.

Experimenteller Teil

1) $[nBu_3NH]_2[Ni(SC_6H_4O)_2] \cdot EtOH$ (2): Zu einer Lösung von 7.60 ml (32.0 mmol) Tri-*n*-butylamin und 1.64 ml (16.0 mmol) o-Mercaptophenol in 40 ml EtOH/H₂O (7:3) wird unter reinem N₂ langsam eine Lösung von 1.88 g (8.00 mmol) NiCl₂ · 6 H₂O in 30 ml EtOH/H₂O getropft. Es bildet sich binnen kurzem eine rote Lösung, aus der innerhalb von 48 h im Kühlschrank (4 °C) 3.11 g (54%) dunkelrote Kristalle ausfallen. – UV (MeCN): λ_{max} (lg ε) = 285 nm (12960), 326 (8350), 431 (1410), 630 (1775), 780 (1500).

2) $[nBu_4N][Ni(SC_6H_4O)_2]$ (4): 4 wurde in Anlehnung an eine Literaturvorschrift^[9] hergestellt. – UV (MeCN): λ_{max} (lg ε) = 390 nm (2560), 500 (1660), 731 (250).

$$\begin{array}{c} C_{28}H_{44}NNiO_2S_2 \ (549.5) \\ Gef. \ C \ 61.2 \ H \ 8.1 \ N \ 2.5 \\ Gef. \ C \ 61.3 \ H \ 8.1 \ N \ 2.5 \end{array}$$

2) Röntgenstrukturanalysen^[17]: Siemens P4RA-Vierkreisdiffraktometer, Mo- K_{α} -Strahlung ($\lambda = 0.71073$ Å), Graphit-Monochromator, Drehanodengenerator, Szintillationszähler, empirische Absorptionskorrekturen, SHELXTL-PLUS-Programme, Direkte Methoden, Kleinste-Quadrate-Verfeinerungen, Wasserstoff-Atome auf

Tab. 1. Atomkoordinaten und Koeffizienten der äquivalenten isotropen Temperaturfaktoren (ohne H-Atome) von 1^[a]

Atom	x	У	2	U
Ni	0.06131(4)	0.51825(3)	0,76579(3)	0.0599(2)
S(1)	0.15308(11)	0.43900(6)	0.74156(8)	0.0764(6)
S(2)	-0.07350(10)	0.46424(6)	0.73410(8)	0.0777(6)
0(1)	0.1744(3)	0.5691(1)	0.8005(2)	0.062(2)
0(2)	-0.0110(3)	0.5915(1)	0.7809(2)	0.074(2)
C(1)	0.2639(4)	0.4813(3)	0.7556(3)	0.063(3)
C(2)	0.2594(6)	0.5459(3)	0.7841(3)	0.062(3)
C(3)	0.3461(7)	0.5808(3)	0.7968(3)	0.074(3)
C(4)	0.4352(6)	0.5550(4)	0.7831(3)	0.089(4)
C(5)	0.4391(6)	0.4923(5)	0.7563(4)	0.095(4)
C(6)	0.3536(7)	0.4566(3)	0.7417(3)	0.079(3)
C(7)	-0.1534(6)	0.5271(3)	0.7384(3)	0.070(3)
C(8)	-0.1100(5)	0.5861(3)	0.7632(3)	0.070/31
C(9)	-0.1695(7)	0.6393(3)	0.7673(3)	0.094(4)
C(10)	-0.2719(8)	0.6332(5)	0.7477(4)	0.115(5)
C(11)	-0.3138(6)	0.5759(6)	0,7225(4)	0.120(5)
C(12)	-0.2560(7)	0.5239(4)	0.7181(3)	0.095(4)

^[a] Der äquivalente isotrope Temperaturfaktor ist definiert als ein Drittel der Spur des orthogonalisierten U_{ii} -Tensors.

Tab. 2. Atomkoordinaten und Koeffizienten der äquivalenten isotropen Temperaturfaktoren (ohne H-Atome) von 3^[n]

Atom	x	У	z	υ
Ni	0.16499(9)	0.22897(4)	0.34942(5)	0.0413(3)
S(1)	0.1700(2)	0.3113(1)	0.2810(Ì)	0.0580(7)
S(2)	0.0780(2)	0.1792(1)	0.2413(1)	0.0589(7)
0(1)	0.2322(4)	0.2721(2)	0.4450(2)	0.043(2)
0(2)	0.1628(5)	0.1574(2)	0.4103(2)	0.044(2)
C(1)	0.2290(7)	0.3605(3)	0.3628(4)	0.046(2)
C(2)	0.2538(7)	0.3323(3)	0.4397(4)	0.044(2)
C(3)	0.3019(8)	0.3686(3)	0.5089(4)	0.055(2)
C(4)	0.3198(9)	0.4315(3)	0.4994(5)	0.067(3)
C(5)	0.2949(9)	0.4591(4)	0.4224(5)	0.072(3)
C(6)	0.2504(8)	0.4236(4)	0.3549(5)	0.066(3)
C(7)	0.0683(7)	0.1071(3)	0.2868(4)	0.049(2)
C(8)	0.1136(7)	0.1056(3)	0.3716(4)	0.045(2)
C(9)	0.0985(7)	0.0501(4)	0.4136(4)	0.054(2)
C(10)	0.0444(8)	-0.0016(4)	0.3709(5)	0.069(3)
C(11)	0.0061(9)	-0.0001(4)	0.2864(6)	0.074(3)
C(12)	0.0157(8)	0.0531(4)	0.2444(5)	0.064(3)

^[a] Der äquivalente isotrope Temperaturfaktor ist definiert als ein Drittel der Spur des orthogonalisierten U_{ii} -Tensors.

idealisierten Positionen berechnet und gruppenweise mit gemeinsamen isotropen Temperaturfaktoren verfeinert, jeweils ein Skalierungsfaktor. Atomparameter sind Tab. 1 und 2 zu entnehmen.

2: $C_{38}H_{70}N_2NiO_3S_2$ (725.8); 293 K; monoklin; $P2_1/n$; a =13.713(6), b = 21.000(10), c = 14.906(8) Å; $\beta = 99.53(4)^{\circ}$; V =4233 Å³; Z = 4; $D_x = 1.139 \text{ gcm}^{-3}$; $\mu(\text{Mo-}K\alpha) = 0.59 \text{ mm}^{-1}$; Transmissionsbereich 0.868-0.808; Kristalldimensionen ca. 0.10 · $0.20 \cdot 0.08 \text{ mm}; \omega - 2\Theta$ -Scan; $2\Theta_{\text{max}} = 45^{\circ}; 4523 \text{ unabhängige Re-}$ flexe; $R(R_w) = 0.0418 (0.0354)$ für 2937 beobachtete Reflexe [I > $2 \cdot \sigma$ (1); 446 Variable (2 Blöcke); alle Nichtwasserstoff-Atome anisotrop.

4: $C_{28}H_{44}NNiO_2S_2$ (549.5); 150 K; monoklin; $P2_1/n$; a = 8.107(3), $b = 21.699(8), c = 16.515(5) \text{ Å}; \beta = 98.20(3)^{\circ}; V = 2875 \text{ Å}^3; Z =$ 4, $D_x = 1.269 \text{ gcm}^{-3}$; $\mu(\text{Mo-}K_{\alpha}) = 0.84 \text{ mm}^{-1}$; Transmissionsbereich 0.989-0.923; Kristalldimensionen ca. 0.10 · 0.15 · 0.35 mm; ω -2 Θ -Scan, 2 $\Theta_{max} = 54^{\circ}$, 6283 unabhängige Reflexe, R (R_w) = 0.0626 (0.0509) für 2751 beobachtete Reflexe $[I > 2 \cdot \sigma(I)]$; 324 Variable; alle Nichtwasserstoff-Atome außer C(19a), C(19c), C(20a), C(20c) (Fehlordnung) anisotrop.

- ^[3] R. Cammack, Adv. Inorg. Chem. 1988, 32, 297.
 ^[4] ^[4a] M. J. Maroney, G. J. Colpas, C. Bagyinka, N. Baidya, P. K. Mascharak, J. Am. Chem. Soc. 1991, 113, 3962. ^[4b] M. J.

Maroney, G. J. Colpas, C. Bagyinka, J. Am. Chem. Soc. 1990, 112, 7067.

- ^[5] B. Krebs, G. Henkel, Angew. Chem. 1991, 103, 785; Angew. Chem. Int. Ed. Engl. 1991, 30, 769.
- ^[6] T. Krüger, B. Krebs, G. Henkel, Angew. Chem. 1989, 101, 54; Angew. Chem. Int. Ed. Engl. 1989, 28, 61.
- Angew. Chem. Int. Ed. Engl. 1707, 20, 01. ^[7] T. Krüger, B. Krebs, G. Henkel, Angew. Chem. **1992**, 104, 71; Angew. Chem. Int. Ed. Engl. **1992**, 31, 54. ^[8] ^[8a] N. Baidya, P. K. Mascharak, D. W. Stephan, C. F. Cam-pagna, Inorg. Chim. Acta **1990**, 177, 233. ^[8b] T. Yamamura, H. Arai. H. Kurihara, R. Kuroda, Chem. Lett. **1990**, 1975. ^[8e] H. Arai, H. Kurihara, R. Kuroda, Chem. Lett. 1990, 1975. S. Fox, Y. Wang, A. Silver, M. Millar, J. Am. Chem. Soc. 1990, 112, 3218.
- ^[9] A. L. Balch, J. Am. Chem. Soc. 1969, 91, 1948.
- ^[10] K. Matsumoto, I. Fukutomi, I. Kinoshita, S. Ooi, Inorg. Chim. Acta 1989, 158, 201.
- ^[11] N. Baidya, D. Ndreu, M. M. Olmstead, P. K. Mascharak, Inorg. Chem. 1991, 30, 2448.
- ^[12] R. L. Girling, E. L. Amma, Inorg. Chem. 1967, 6, 2009.
- ^[13] N. Baidya, M. M. Olmstead, P. K. Mascharak, Inorg. Chem. 1991, 30, 3967.
- ^[14] X. Chen, Y. Hu, D. Wu, L. Weng, B. Kang, Polyhedron 1991, 10, 2651.
- ^[15] R. P. Burns, C. A. McAuliffe, Adv. Inorg. Chem. Radiochem. 1979, 22, 303.
- ^[16] [16] C. Mahadevan, M. Seshasayee, P. Kuppusamy, P. T. Manoharan, J. Cryst. Spectr. Res. 1985, 15, 305. ^[16] D. Sellmann, J. Cryst. Spectr. Res. 1985, 15, 305. ^[16] D. Sellmann, Science and P. Cham. Science and P. Science a S. Fünfgelder, F. Knoch, M. Moll, Z. Naturforsch. B: Chem. Sci. 1991, 46, 1601.
- ^[17] Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-57110, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[433/92]

^{*} Herrn Professor Dietrich Mootz zum 60. Geburtstag gewidmet. ^[1] J. R. Lancaster, Jr. (Hrsg.), The Bioinorganic Chemistry of Nickel,

VCH, Weinheim, 1988, und dort zitierte Literatur.

^[2] C. T. Walsh, W. H. Orme-Johnson, Biochemistry 1987, 26, 4901, und dort zitierte Literatur.